
Most every book has a “straggler” chapter that really doesn’t fit with the rest. Well, this
is the straggler chapter for Robot Builder’s Bonanza. It contains various odds-and-ends dis-
cussions about robot building, including some of my own personal methodologies, rants,
and observations.

But First…
All robots are different because their creators have different tasks in mind for their creations
to accomplish. A robot designed to find empty soda cans is going to be radically different
from one made to roam around a warehouse sniffing out the smoke and flames of a fire.

Consider that a true robot is a machine that not only acts independently within an envi-
ronment but reacts independently of that environment. In describing what a robot is it’s
often easier to first consider what it isn’t:

Your car is a machine, but it’s not a robot. Unless you outfit it with special gizmos, it
has no way of driving itself (okay, so “Q” can make a self-running car for James Bond).
It requires you to control it, to steer the wheels and operate the gas and brake pedals,
and to roll down the window to talk to the nice police officer.

42
TIPS, TRICKS, AND TIDBITS

FOR THE ROBOT EXPERIMENTER

695

From Robot Builder’s Bonanza, 2nd Edition. See www.robotoid.com for more. © 2001

Your refrigerator is a machine, but it’s not a robot. It may have automatic circuitry that
can react to an environment (increase the cold inside if it gets hot outside), but it can-
not load or unload its own food, so it still needs you for its most basic function.
Your dishwasher is a machine, but it’s not a robot. Like the refrigerator, the dishwasher
is not self-loading, may not adjust itself in response to how dirty the dishes are, and can-
not be reprogrammed to accommodate changes in the soap you use, nor can it detect
that you’ve loaded it with $100-a-plate porcelain—so go easy on the rinse cycle, thank
you very much.

Other machines around your home and office are the same. Consider your telephone
answering machine, your copier, or even your personal computer. All need you to make
them work and accomplish their basic tasks.

A real robot, on the other hand, doesn’t need you to fulfill its chores. A robot is pro-
grammed ahead of time to perform some job, and it goes about doing it. Here, the dis-
tinction between a robot and an automatic machine becomes a little blurry because both
can run almost indefinitely without human intervention (not counting wear and tear and
the availability of power). However, most automatic machines lack the means to interact
with their environment and to change that environment if necessary. This feature is often
found in more complex robots.

Beyond this broad distinction, the semantics of what is and is not a robot isn’t a major
concern of this book. The main point is this: Once the robot is properly programmed, it
should not need your assistance to complete its basic task(s), barring any unforeseen obsta-
cles or a mechanical failure.

“What Does My Robot Do?”: A Design
Approach
Before you can build a robot you must decide what you want the robot to do. That seems
obvious, but you’d be surprised how many first-time robot makers neglect this important
step. By reducing the tasks to a simple list, you can more easily design the size, shape, and
capabilities of your robot. Let’s create an imaginary homebuilt robot named RoBuddy, for
“Robotic Buddy,” and go through the steps of planning its design. We’ll start from the
standpoint of the jobs it is meant to do. For the sake of simplicity, we’ll design RoBuddy
so that it’s an “entertainment” ‘bot—it’s for fun and games and is not built for handling
radioactive waste or picking up after your dog Spot.

I’ve found that one of the first things people ask me about my robots is, “So, what does
it do?” That’s not always an easy question to answer because the function of a robot can’t
always be summarized in a quick sentence. Yet most people don’t have the patience to lis-
ten to a complex explanation. Such is the quandary of the robot builder!

AN ITINERARY OF FUNCTIONS

One of the best shortcuts to explaining what a robot can do is to simply give the darned
thing a vacuum cleaner. That way, when you don’t feel like repeating the whole litany of

696 TIPS, TRICKS, AND TIDBITS FOR THE ROBOT EXPERIMENTER

capabilities, you can merely say, “it cleans the floors.” That’s almost always guaranteed to
elicit a positive response. So this is Basic Requirement #1: RoBuddy must be equipped
with a vacuum cleaner. And since RoBuddy is designed to be self-powered from batteries,
the vacuum cleaner needs to run under battery power too. Fortunately, auto parts stores
carry a number of 12-volt portable vacuum cleaners from which you can choose.

Like the family dog that performs tricks for guests, a robot that mimics some activity
amusing to humans is a great source of entertainment. One of the most useful—and effec-
tive—activities is pouring and serving drinks. That takes at least one arm and gripper,
preferably two, and the arms must be strong and powerful enough to lift at least 12 ounces
of beverage. We now have Basic Requirement #2: RoBuddy must be equipped with at least
one appendage that has a gripper designed for drinking glasses and soda cans.

The RoBuddy must also have some kind of mobility so that at the very least it can move
around and vacuum the floor. There are a number of ways to provide locomotion to a robot,
and these were described in earlier chapters. But for the sake of description, let’s assume
we use the common two-wheel-drive approach, which consists of two motorized wheels
counterbalanced by one or two nonpowered casters. That’s Basic Requirement #3:
RoBuddy must have two drive motors and two wheels for moving across the floor.

Since RoBuddy flits about your house all on its own accord, it has to be able to detect
obstacles so it can avoid them. Obviously, then, the robot must be endowed with some kind
of obstacle detection devices. We’re up to Basic Requirement #4: RoBuddy must be
equipped with passive and active sensors to detect and avoid objects in its path.

Serving drinks, vacuuming the floor, and avoiding obstacles requires an extensive
degree of intelligence and is beyond the convenient capability of “hard-wired” discrete cir-
cuits consisting of some resistors, a few capacitors, and a handful of transistors. A better
approach is to use a computer, which is capable of being programmed and reprogrammed
at will. This computer is connected to the vacuum cleaner, arm and gripper, sensors, and
drive motors. Finally, then, this is Basic Requirement #5: RoBuddy must be equipped with
a computer to control the robot’s actions.

These five basic requirements may or may not be important to you or applicable to all
your robot creations. However, they give you an idea of how you should outline the func-
tions of your robot and match them with a hardware requirement.

ADDITIONAL FEATURES

Depending on your time, budget, and construction skill, you may wish to endow your
robot(s) with a number of other useful features, such as:

Sound output perhaps combining speech, sound effects, and music.
Variable speed motors so your robot can get from room to room in a hurry but slow
down when it’s around people, pets, and furniture.
Set-and-forget motor control, so the “brains on board” that is controlling your ‘bot needn’t
spend all its processing power just running the drive motors.
Distance sensors for the drive motors so the robot knows how far it has traveled
(“odometry”).
Infrared and ultrasonic sensors to keep the robot from hitting things.
Contact bumper switches on the robot so it knows when it’s hit something and to stop
immediately.

“WHAT DOES MY ROBOT DO”?: A DESIGN APPROACH 697

LCD panels, indicator lights, or multidigit displays to show current operating status.
Tilt switches, gyroscopes, or accelerometers to indicate when the robot has fallen over,
or is about to.
Voice input, for voice command, voice recognition, and other neat-o things.
Teaching pendant and remote control so you can move a joystick to control the drive
motors and record basic movements.

Of course, we discussed all of these in previous chapters. Review the table of contents
or index to locate the relevant text on these subjects.

Reality versus Fantasy
In building robots it’s important to separate the reality from the fantasy. Fantasy is a Star
Wars R2-D2 robot projecting a hologram of a beautiful princess. Reality is a homebrew
robot that scares the dog as it rolls down the hallway—and probably hits the walls as it
goes. Fantasy is a giant killer robot that walks on two legs and shoots a death ray from a
visor in its head. Reality is foot-tall “trash can” robot that pours your houseguests a Diet
Coke. Okay, so it spills a little every now and then . . . now you know why a robot equipped
with a vacuum cleaner comes in handy!

It’s easy to get caught up in the romance of designing and building a robot. But it’s
important to be wary of impossible plans. Don’t attempt to give your robot features and
capabilities that are beyond your technical expertise, budget, or both (and let’s not also for-
get the limits of modern science). In attempting to do so, you run the risk of becoming
frustrated with your inability to make the contraption work, and you miss out on an other-
wise rewarding endeavor.

When designing your automaton, you may find it helpful to put the notes away and let
them gel in your brain for a week. Quite often, when you review your original design, you
will realize that some of the features and capabilities are mere wishful thinking, and
beyond the scope of your time, finances, or skills. Make it a point to refine, alter,
and adjust the design of the robot before, and even during, construction.

Understanding and Using Robot
“Behaviors”
A current trend in the field of robot building is “behavior-based robotics,” where you pro-
gram a robot to act in some predictable way based on both internal programming and
external input. For example, if the battery of your robot becomes weak, it can be pro-
grammed with a “find energy” behavior that will signal the robot to return to its battery
charger. Behaviors are a convenient way to describe the core functionality of robots—a
kind of “component” architecture to define what a robot will do given a certain set of
conditions.

698 TIPS, TRICKS, AND TIDBITS FOR THE ROBOT EXPERIMENTER

The concept of behavior-based robotics has been around since the 1980s and was devel-
oped as a way to simplify the brain-numbing computational requirements of artificial
intelligence systems popular at the time. Behavior-based robotics is a favorite at the
Massachusetts Institute of Technology, and Professor Rodney Brooks, a renowned leader
in the field of robot intelligence, is one of its major proponents.

Since the introduction of behavior-based robotics, the idea has been discussed in count-
less books, papers, and magazine articles, and has even found its way into commercial
products. The LEGO Mindstorms robots, which are based on original work done at MIT,
use behavior principles. See Appendix A, “Further Reading,” for books that contain useful
information on behavior-based robotics.

WHEN A BEHAVIOR IS JUST A SIMPLE ACTION

Since the introduction of behavior-based robotics, numerous writers have applied the term
behavior to cover a wide variety of things—to the point that everything a robot does becomes
a “behavior.” The result is that robot builders can become convinced their creations are really
exhibiting human- or animal-like reactions, when all they are doing is carrying out basic
instructions from a computer or simple electronic circuit. Delusions aside, this has the larger
effect of distracting you from focusing on other useful approaches for dealing with robots.

Let me explain by way of an analogy. Suppose you see a magic show so many times that
you end up believing the disappearing lady is really gone. Not so. It’s an optical and psy-
chological trick every time. Sometimes a robot displays a simple action as the result of
rudimentary programming, and by calling everything it does a “behavior” we lose a clear-
er view of how the machine is really operating.

The following sections contain a brief discourse on behavior-based robotics, and my
personal views on clarifying terms so we can get the most out of the behavior concept.

WALL FOLLOWING: A COMMON “BEHAVIOR?”

One common example of behavior-based robotics is the “wall follower,” which is typical-
ly a robot that always turns in an arc, waiting to hit a wall. A sensor on the front of the
robot detects the wall collision. When the sensor is triggered, the robot will back away
from the wall, go forward a set amount, then repeat the whole process all over again.

This is a perfect example of how the term behavior has been misplaced: the true behav-
ior of the robot is not to follow a wall but simply to turn in circles until it hits something.
When a collision occurs, the robot moves to clear the obstacle, then continues to turn in a
circle once again. In the absence of the wall—a reasonable change in environment—the
robot would not exhibit its namesake “behavior.” Or conversely, if there were additional
objects in the room, the robot would treat them as “walls” too. In that case, the robot might
be considered useless, misprogrammed, or worse.

If “wall following” is not a true behavior, then what is it? I won’t presume to come up
with an industry-standard term. The important thing to remember is that a true behavior is
independent, or nearly so, of the robot’s typical physical environment. That’s Rule Number
One to keep in mind.

Note that environment is not the same as a condition. A condition is a light shining on
the robot that it might move toward or away from; an environment is a room or other area

UNDERSTANDING AND USING ROBOT “BEHAVIORS” 699

that may or may not have certain attributes. Conditions contribute to the function of the
robot, just like batteries or other electric power contribute to the robot’s ability to move its
motors. Conversely, environments can be ever changing and in many ways unmanageable.
Environments consist of physical parameters under which the robot may or may not oper-
ate at any given time.

Robotic behaviors are most useful when they encapsulate multiple variables, particu-
larly those are in response to external input (senses). This is Rule Number Two of true
behavior-based robotics. The more the robot is able to integrate and differentiate between
different input (senses), irrespective of its environment—and still carry out its proper pro-
gramming—the more it can demonstrate its true behaviors.

THE “WALT DISNEY EFFECT”

It is tempting to endow robots with human- or animal-like emotions and traits, such as
hunger (battery power) or affinity/love (a beacon or an operator clicking a “clicker”). But
in my opinion these aren’t behaviors at all. They are anthropomorphic qualities that mere-
ly appear to result in a human-type response simply because we want them to.

In other words, it’s completely made up. Imagine this in the extreme: Is a robot “suici-
dal” if it has a tendency to drive off the workbench and break as it hits the floor? Or is it
that your workbench is too small and crowded, and your concrete floor is too hard?
Emotions such as love are extremely complex; as a robot builder, it’s easy to get confused
about what your creation can really do and feel.

In his seminal book Vehicles, Valentino Braitenberg gives us a study of synthetic psy-
chology on which fictional “vehicles” demonstrate certain behavioral traits. For example,
Braitenberg’s Vehicle 2 has two motors and two sensors (say, light sensors). By connecting
the sensors to the motors in different ways the robot is said to exhibit “emotions,” or at the
least actions we humans may interpret as quasi-intelligent or human-like emotional
responses. In one configuration, the robot may steer toward the light source, exhibiting
“love.” In another configuration, the robot may steer away, exhibiting “fear.”

Obviously, the robot is feeling neither of these emotions, nor does Braitenberg suggest
this. Instead, he gives us vehicles that are fictional representations of human-like traits. It’s
important not to get caught up in Disneyesque anthropomorphism. A good portion of
behavior-based robotics centers around human interpretation of the robot’s mechanical
actions. We interpret those actions as intelligent, or even as cognition. This is valid up to a
point, but consider that only we ourselves experience our own intelligence and cognition
(that is, we are “self-aware”); a robot does not. Human-like machine intelligence and emo-
tions are in the eye of a human beholder, not in the brain of the robot. This, however, may
change in the future as new computing models are discovered, invented, and explored.

ROBOTIC FUNCTIONS AND ERROR CORRECTION

When creating behaviors for your robots, keep in mind the function that you wish to
accomplish. Then, consider how that function is negatively affected by variables in the
robot’s likely environments. For practical reasons (budget, construction skill), you must
consider at least some of the limitations of the robot’s environment in order to make it reli-
ably demonstrate a given behavior. A line-following robot, which is relatively easy to build

700 TIPS, TRICKS, AND TIDBITS FOR THE ROBOT EXPERIMENTER

and program, will not exhibit its line-following behavior without a line. By itself, such a
robot would merely be demonstrating a simple action. But by adding error correction—to
compensate for unknown or unexpected changes in environment—the line-following robot
begins to demonstrate a useful behavior. This behavior extends beyond the robot’s imme-
diate environmental limits. The machine’s ability to go into a secondary, error-correcting
state to find a line to follow is part of what makes a valid line-following behavior—even
more so if in the absence of a line to follow the robot can eventually make its own.

Error correction is Rule Number Three of behavior-based robotics. Without error cor-
rection, robots operating in restrictive environments are more likely to exhibit simple, even
stupid, actions in response to a single stimulus. Consider the basic “wall-following” robot
again: it requires a room with walls—and, at that, walls that are closer together than its
turning radius. Outside or in a larger room, the robot “behaves” completely differently, yet
its programming is exactly the same. The problem of the wall-following robot could be
fixed either by adding error correction or by renaming the base behavior to more accu-
rately describe what it physically is doing.

ANALYZING SENSOR DATA TO DEFINE BEHAVIORS

By definition, behavior-based robotics is reactive, so it requires some sort of external input
by which a behavior can be triggered. Without input (a light sensor, ultrasonic detector,
bumper switch, etc.) the robot merely plays out a preprogrammed set of moves—simple
actions, like a player piano. More complex behaviors becomes possible if the following
capabilities are added:

The ability to analyze the data from an analog, as opposed to a digital, sensor. The out-
put of an analog sensor provides more information than the simple on/off state of a dig-
ital sensor. Let’s call this sensor parametrics.
The ability to analyze the data from multiple sensors, either several sensors of the same
type (a gang of light-sensitive resistors, for example) or sensors of different types (a
light sensor and an ultrasonic sensor). This is commonly referred to as sensor fusion.

Let’s consider sensor parametrics first. Suppose your robot has a temperature sensor
connected to its onboard computer. Temperature sensors are analog devices; their output is
proportional to the temperature. You use this feature to determine a set or range of prepro-
grammed actions, depending on the specified temperature. This set of actions constitutes
a behavior or, if the actions are distinct at different temperatures, a variety of behaviors.
Similarly, a photophilic robot that can discern the brightest light among many lights also
exhibits sensor analysis from parametric data.

Sensor fusion analyzes the output of several sensors. Your robot initiates the appropri-
ate behavioral response as a result. For example, your robot may be programmed to follow
the brightest light but also detect obstructions in its path. When an obstruction is encoun-
tered, the robot is programmed to go around it, then continue—perhaps from a new direc-
tion—toward the light source.

Sensor fusion helps provide error correction and allows a robot to continue exhibiting
its behavior (one might call it the robot’s “prime directive”) even in the face of unpre-
dictable environmental variables. The variety, sophistication, and accuracy of the sensors

UNDERSTANDING AND USING ROBOT “BEHAVIORS” 701

determine how well the robot will perform in any given circumstance. Obviously, it’s not
practical—economic or otherwise—to ensure that your robot will work flawlessly under
all environments and conditions. But the more you give your robots the ability to overcome
common and reasonable environmental variables (such as socks on the floor), the better it
will display the behavior you want.

THE ROLE OF SUBSUMPTION ARCHITECTURE

Subsumption architecture isn’t an odd style of building. Rather, it’s a technique devised by
Dr. Brooks at MIT that has become a common approach for dealing with the complexities
of sensor fusion and artificial machine intelligence. With subsumption, sensor inputs are
prioritized. Higher-priority sensors override lower-priority ones. In the typical subsump-
tion model, the robot may not even be aware that a low-priority sensor was triggered.

More complex hybrid systems may employ a form of simple subsumption along with
more traditional artificial intelligence programming. The robot’s computer may evaluate
the relative merits of low-priority sensors and use this information to intuit a unique course
of action, perhaps one in which direct programming for the combination of input variables
does not yet exist. In some cases, the output of a low-priority sensor may moderate the
interpretation of a high-priority one.

As an example, a fire-fighting robot may have both a smoke detector and a flame detec-
tor. The smoke detector is likely to sense smoke before any fire can be identified, since
smoke so easily permeates a structure. Therefore, the smoke sensor will likely be given a
lower priority to the flame detector, since it is so easily triggered. But consider that flames
can exist without a destructive fire (e.g., a fireplace and candlelight, both of which do not
emit much smoke under normal circumstances). Rather than have the robot totally ignore
its other sensors when the high-priority flame detector is triggered, the robot instead inte-
grates the output of both flame and smoke sensors to determine what is, and isn’t, a fire
that needs to be put out.

Multiple Robot Interaction
An exciting field of research is the interaction of several robots working together. Rather than
build one big, powerful robot that does everything, multirobot scenarios combine the
strengths of two or more smaller, simpler machines to achieve synergy: the whole is greater
than the parts. Anyone who has seen the now-classic science fiction film Silent Running
knows what three diminutive robots (named Huey, Luey, and Dewey, by the way) can do!

Robot “tag teams” are common in college and university robot labs, where groups of
robot researchers compete with their robots as the players of a game (robo-soccer is pop-
ular). Each robot in the competition has a specific job, and the goal is to have them work
together. There are three common types of robot-to-robot interaction:

Peer-to-peer. Each robot is considered equal, though each one may have a different job
to do, based on predefined programming The workload may also be divided based on
physical proximity to the work, and whether the other robots in the group are busy
doing other things.

702 TIPS, TRICKS, AND TIDBITS FOR THE ROBOT EXPERIMENTER

Queen/drone. One robot serves as the leader, and one or more additional robots serve
as worker drones. Each drone takes it’s work orders directly from the queen and may
interact only peripherally with the other drone ‘bots.
Convoys. Combining the first two types, the leader of the convoy is the “queen” robot,
and the other robots act as peers among themselves. In convoy fashion, each robot may
rely on the one just ahead for important information. This approach is useful when the
“queen” is not capable, for computer processing reasons or otherwise, to control a large
number of fairly mindless drones.

Why all the fuss with multiple robots? First and foremost because it’s generally easier
and cheaper to build many small and simple robots than a single big and complex one.
Second, the mechanical failure of one robot can be compensated for by the remaining good
robots. In many instances, the “queen” or leader robot is no different than the others, it just
plays a coordinating role. In this way, should the leader ‘bot go down for the count, any
other robot can easily take its place. And third, work tends to get done faster with more
hands helping.

Dealing with Failures
Few robots work perfectly when you flip the switch the first time. Failure is common in
robot building and should be expected. As you learn from these failures you will build bet-
ter robots. Failure can occur at the onset when you first try a new design, or it can occur
at any point thereafter, as the robot breaks down for one reason or another.

MECHANICAL FAILURE

Mechanical problems are perhaps the most common failure. A design you developed just
doesn’t work well, usually because the materials or the joining methods you used were not
strong enough. Avoid overbuilding your robots (that tends to make them too expensive and
heavy), but at the same time strive to make them physically strong. Of course, “strong” is
relative: a lightweight, scarab-sized robot needn’t have the muscle to tote a two-year-old
on a tricycle. At the very least, however, your robot construction should support its own
weight, including batteries.

When possible, avoid “slap-together” construction, such as using electrical or duct tape.
These methods are acceptable for quick prototypes but are unreliable for long-term test-
ing. When gluing parts in your robot, select a glue that is suitable for the materials you are
using. Epoxy and hot-melt glues are among the most permanent. You may also have luck
with cyanoacrylate (CA) glues, though the bond may become brittle and weak over time
(a few years or more, depending on humidity and stress).

DEALING WITH FAILURES 703

Use the “pull test” to determine if your robot construction methods are sound. Once you
have attached something to your robot— using glue, nuts and bolts, or whatever— give
it a healthy tug. If it comes off, the construction isn’t good enough. Look for a better way.

ELECTRICAL FAILURE

Electronics can be touchy, not to mention extremely frustrating, when they don’t work
right. Circuits that functioned properly in a solderless breadboard may no longer work
once you’ve soldered the components in a permanent circuit, and vice versa. There are
many reasons for this, including mistakes in wiring, odd capacitive effects, even variations
in tolerances due to heat transfer. Here are some pointers:

If a circuit doesn’t work from the get-go, review your wiring and make necessary
repairs.

If the circuit fails after some period of use, the cause may be a short circuit or broken
wire, or it could be a burned-out component. Example: if your motors draw too much
current from the drive circuitry you run the risk of permanently damaging some semi-
conductors.

Certain electronic circuit construction techniques are better suited for an active, mobile
robot. Wire-wrap is a fast way to build circuits, but its construction can invite problems.
The long wire-wrap pins can bend and short out against one another. Loose wires can come
off. Parasitic signals and stray capacitance can cause “marginal” circuits to work, then not
work, and then work again. For an active robot it may be better to use a soldered circuit
board, perhaps even a printed circuit board of your design (see Chapter 6, “Electronic
Construction Techniques,” for more information).

Some electrical problems may be caused by errors in programming, weak batteries, or
unreliable sensors. For example, it is not uncommon for sensors to occasionally yield total-
ly wacky results. This can be caused by design flaws inherent in the sensor itself, spurious
data (noise from a motor, for example), or corrupted or out-of-range data. Ideally, the pro-
gramming of your robot should anticipate occasional bad sensor readings and basically
ignore them. A perfectly acceptable approach is to throw out any sensor reading that is out-
side the statistical model you have decided on (e.g., a sonar ping that says an object is 1048
feet away; the average robotic sonar system has a maximum range of about 35 feet).

PROGRAMMING FAILURE

As more and more robots use computers and microcontrollers as their “brains,” program-
ming errors are fast becoming one of the most common causes of failure. There are three
basic kinds of programming “bugs.” In all cases, you must review the program, find the
error, and fix it:

Compile bug, caused by bad syntax. You can instantly recognize these because the pro-
gram compiler or downloader will flag these mistakes and refuse to continue. You must
fix the problem before you can transfer the program to the robot’s microcontroller or
computer.
Run-time bug, caused by a disallowed condition. A run-time bug isn’t caught by the
compiler. It occurs when the microcontroller or computer attempts to run the program.
An example of a common run-time bug is the use of an out-of-bounds element in an
array (for instance, trying to assign a value to the thirty-first element in a 30-element

704 TIPS, TRICKS, AND TIDBITS FOR THE ROBOT EXPERIMENTER

array). Run-time bugs may also be caused by missing data, such as looking for data on
the wrong input pin of a microcontroller.
Logic bug, caused by a program that simply doesn’t work as anticipated. Logic bugs
may be due to simple math errors (you meant to add, not subtract) or by mistakes in cod-
ing that cause a different behavior than you anticipated.

Task-Oriented Robot Control
As “workers,” robots have a task to do. In many books on robotics theory and application,
these tasks are considered “goals.” Personally, I’m not big on the term goal because that
suggests a human emotion involving desire. The robot you build will have no “desire” to
fetch you a can of soda, but will merely do so because its programming tells it to. Instead,
I prefer the term task—a defined job that the robot is expected to accomplish. A robot may
be given multiple tasks at the same time, such as the following:

1. Get me a can of Dr. Pepper;
2. Avoid running into the wall while doing so;
3. Watch out for the cat and other ground-based obstacles;
4. And remember where you came from so you can bring the soda back to me.

These tasks form a hierarchy. Task 4 cannot be completed before task 1. Together, these
two form the primary directive tasks (shades of Star Trek here—okay, I admit it: I’m a
Trekker!). Tasks 2 and 3 may or may not occur; these are error mode tasks. Should they
occur, they temporarily suspend the processing of the primary directive tasks.

PROGRAMMING FOR TASKS

From a programming standpoint, you can consider most any job you give a robot to look
something like this:

Do Task X until
on error Do Task Y

repeat
Task Y until no error

resume Task X
Task X complete

X is the primary directive task, the thing the robot is expected to do. Y is a special func-
tion that gets the robot out of trouble should an error condition—of which there may be
many—occurs. Most error modes will prevent the robot from accomplishing its primary
directive task. Therefore, it is necessary to clear the error first before resuming the prima-
ry directive.

Note that it is entirely possible that the task will be completed without any kind of com-
plication (no errors). In this case, the error condition is never raised, and the Y functionality

TASK-ORIENTED ROBOT CONTROL 705

is not activated. The robot programming is likewise written so that when the error condi-
tion is cleared, it can resume its prime directive task.

MULTITASKING ERROR MODES FOR OPTIMAL FLEXIBILITY

For a real-world robot, errors are just as important a consideration as tasks. Your robot pro-
gramming must deal with problems, both anticipated (walls, chairs, cats) and unanticipat-
ed (water on the kitchen floor, no sodas in the fridge). The more your robot can recognize
error modes, the better it can get itself out of trouble. And once out of an error mode, the
robot can be reasonably expected to complete its task.

How you program various tasks in your robot is up to you and the capabilities of your
robot software platform. If your software supports multitasking (BasicX, OOPic, LEGO
Mindstorms, and others), then try to use this feature whenever possible. By dealing with
tasks as discrete units, you can better add and subtract functionality simply by including
or removing tasks in your program.

Equally important, you can make your robot automatically enter an error mode task
without specifically waiting for it in code. In non-multitasking procedural programming,
your code is required to repeatedly check (poll) sensors and other devices that warn the
robot of an error mode. If an error mode is detected, the program temporarily branches to
a portion of the code written to handle it. Once the error is cleared, the program can resume
execution where it left off.

With a multitasking program, each task runs simultaneously. Tasks devoted to error
modes can temporarily take over the processing focus to ensure that the error is fixed
before continuing. The transfer of execution within the program is all done automatically.
To ensure that this transfer occurs in a logical and orderly manner, the program should give
priorities to certain tasks. Higher-priority tasks are able to take over (“subsume,” a word
now in common parlance) other running tasks when necessary. Once a high-priority task
is completed, control can resume with the lower-priority activities, if that’s desired.

GETTING A PROGRAM’S ATTENTION VIA HARDWARE

Even in systems that lack multitasking capability it’s still possible to write a robot control
program that doesn’t include a repeating loop that constantly scans (polls) the condition of
sensors and other input. Two common ways of dealing with unpredictable external events
are using a timer (software) interrupt or a hardware (physical connection) interrupt.

Timer interrupt A timer built into the computer or microcontroller runs in the back-
ground. At predefined intervals—most commonly when the timer overflows its count—the
timer grabs the attention of the microprocessor, which in turn temporarily suspends
the main program. The microprocessor runs a special timer interrupt program, which in the
case of a task-based robot would poll the various sensors and other input looking for pos-
sible error modes. (Think of the timer as a heart beat; at every beat the microprocessor
pauses to do something special.)

If no error is found, the microprocessor resumes the main program. If an error is found,
the microprocessor runs the relevant section in code that deals with the error. Timer

706 TIPS, TRICKS, AND TIDBITS FOR THE ROBOT EXPERIMENTER

interrupts can occur hundreds of times each second. That may seem like a lot in human
terms, but it can be trivial to a microprocessor running at several million cycles per second.

Hardware interrupt A hardware interrupt is a mechanism by which to immediately
get the attention of the microprocessor. It is a physical connection on the microprocessor
that can in turn be attached to some sensor or other input device on the robot. With a hard-
ware interrupt the microprocessor can spend 100 percent of its time on the main program
and temporarily suspend it if, and only if, the hardware interrupt is triggered.

Hardware interrupts are used extensively in most computers, and their benefits are well
established. Your PC has several hardware interrupts. For example, the keyboard is con-
nected to a hardware interrupt, so when you press a key the processor immediately fetch-
es the data and makes it available to whatever program is currently running. The standard
PC architecture has room for 16 hardware interrupts, even though the microprocessor uses
just one interrupt pin. The one pin is multiplexed to make 16 separate inputs. You can do
something similar in your own robot designs.

Glass half-empty, half-full There are two basic ways to deal with error modes. One
is to treat them as “exceptions” rather than the rule:

In the exception model, the program assumes no error mode and only stops to execute
some code when an error is explicitly encountered. This is the case with a hardware
interrupt.
In the opposite model, the program assumes the possibility of an error mode all the time
and checks to see if its hunch is correct. This is the case with the timer interrupt.

The approach you use will depend on the hardware choices available to you. If you have
both a timer and a hardware interrupt at your disposal, the hardware interrupt is probably
the more straightforward method because it allows the microprocessor to be used more
efficiently.

AND LAST 707

